
MATHEMATICS OF COMPUTATION 
VOLUME 54, NUMBER 189 
JANUARY 1990, PAGES 139-154 

THE COLLOCATION METHOD FOR FIRST-KIND 
BOUNDARY INTEGRAL EQUATIONS 

ON POLYGONAL REGIONS 

YI YAN 

ABSTRACT. In this paper the collocation method for first-kind boundary inte- 
gral equations, by using piecewise constant trial functions with uniform mesh, is 
shown to be equivalent to a projection method for second-kind Fredholm equa- 
tions. In a certain sense this projection is an interpolation projection. By intro- 
ducing this technique of analysis, we particularly consider the case of polygonal 
boundaries. We give asymptotic error estimates in L2 norm on the boundaries, 
and some superconvergence results for the single layer potential. 

1. INTRODUCTION 

The collocation method is a frequently used numerical technique in practi- 
cal engineering problems because of its easy implementation, particularly for 
boundary integral equations for two-dimensional boundary value problems. 
One of the applications is to boundary integral equations of the first kind with 
logarithmic kernel (Symm's integral equation) on a closed boundary F, 

(1) -jloglx-ylg(y)dy=f(x), xEIcR2, 

where dy denotes the element of arc length at a point y E F. For the collo- 
cation method for this equation, the trial space is usually chosen as a B-spline 
space, and the collocation points are chosen appropriately according to the de- 
gree of the spline. 

The asymptotic behavior of the collocation solution of boundary integral 
equations on a smooth boundary has been analyzed theoretically and experi- 
mentally by many authors. Particularly, the recent results of Arnold, Wendland, 
Saranen and Schmidt in [2, 3, 13, 15, 16, 14] cover the first-kind boundary 
integral equation of potential problems. In their work, basically two general 
techniques of analysis have been introduced. One is based on an equivalence 
of some collocation methods with a certain Petrov-Galerkin method, and the 
other is based on simple Fourier analysis. Both of these two approaches rely on 
the strong ellipticity of the boundary integral operator. However, the theoret- 
ical analysis of the collocation method has not yet been sufficiently developed 
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to cover the case of a polygonal boundary F, which occurs more frequently 
in practical engineering problems. The reason is that in such cases the integral 
operator is no longer a pseudodifferential operator with a logarithmic principal 
part, so that the two techniques of analysis in the papers cited above are not 
directly applicable. There are only a few works which analyze the collocation 
method on a polygonal boundary F [8, 9]. In these, Costabel and Stephan intro- 
duce local Mellin transforms and a weighted norm, and obtain error estimates 
for collocation with piecewise linear trial functions. 

In the present paper, we introduce a different approach to the analysis of 
convergence of midpoint collocation with piecewise constant trial functions, 
and give asymptotic error estimates in the L2 norm on the boundary, and 
some superconvergence results for the single layer potential. 

The approach is to view the collocation method for the first-kind integral 
equation as equivalent to a projection method for a second-kind Fredholm equa- 
tion with a particular projection operator. This particular projection is derived 
from the collocation method for equation (1) on a circle. In ?2 we present in 
detail an analysis of the projection operator by employing the spectral method. 
Although this analysis here is only for the piecewise constant function space, we 
believe that similar results are possible for spline function spaces of arbitrary 
degree if the mesh is uniform. Thus, this approach may be available for any 
spline function spaces with uniform mesh. 

Let F be a polygon with corner points v., I = 1, ..., y. On the poly- 

gon F let An = {Zo0, , Zn-1} C F be an equally spaced mesh, and An be 
the corresponding midpoint mesh. Then we adopt An as the break points of 
trial functions, and A/ as the collocation points. The trial function space is a 

h piecewise constant space S (F) with break points A/, where h = 27/n. The 
h h collocation method approximates the solution g by gh E Sh(F), such that 

(2) - log Ix -- ylg (y) dy = f(x) for x E A. 
r~~~~~~~~~~~~~~ 

For convenience of our analysis, we represent equations (1) and (2) as follows. 
We parametrize the polygon F by a 27r-periodic function v (s): R/27rZ -) F, 

with the parameter s proportional to the arc length; that is, Iv'(s)I-d(F)/27, 
where d(F) is the length of F. Suppose that the corner points are at v, = 
v(sl).., v,= v(s,,), with -7 = so < ... < sin < s = a, v0 = v(s0) = 

v'P+ = v(s',P+) . Then v(s) can be described as 

s-s 
V(s)=v1 +s 'J- (v1 -v) fors1<s<s1J+, j=O,...,y. 

J 
+ J+ 

Thus, a transformed form of equation (1) is obtained, 

1 r 

- log Iv (s) - v (a)Jw (a) du = 7(s) , s E [-7ac, 7c] 5 

with w(s) = v'(s)Ig(v(s)) and f(s) = lf(v(s)). This equation can also be 
written in the form of an operator equation 

()* Kw=f. 
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Correspondingly, we have a transformed collocation equation. Let aj= 
-?+hj for j=0,l,., n, and oJ+112=oJ? h for j=0,1,..., n-l. 
Further assume that the function v (s) satisfies z = v (oJ) j = 0, ..., n -. 

h Set 11 = {yJ:j = 0, 1, .. ., n}, and let Sh(171) be a piecewise constant function 
J~~~~~~~~~~~~~~~~~ space on [-7r, 7r] with break points 171. Suppose that Qh is an interpolation 

projection from C[-7r, 7r] to Sh(11) defined by 

n-1 

QhV (S) ZV (j+ 1/29 XJ (S), 
J=O 

where 

J { 0 otherwise. 

Then the transformed form of the collocation equation (2), in operator form, 
is 

(2) *Kw 
h h- 

(2)* ~~~~Qw ~Q f 

with w E Sh(H). 
What we treat here is the collocation method based on the piecewise con- 

stant trial function space S (F) with an equally spaced mesh on the whole 
polygon F; or, in other words, with a uniform mesh. The corner points vj, 
j = 1, ... , y, then may not belong to the uniform mesh An . In practical com- 
putation one often chooses the corner points as a part of the mesh points to 
obtain an easier integration around the corners. In this sense the treatment here 
is not completely satisfactory. However, the corner points vJ, i = 1, ..., Y 

can be put into a uniform mesh A h without difficulty for many practical cases 
such as squares, or polygons of equal sides. We also know that the singularities 
of the solution g(v (s)) at corners often degrade the rate of convergence in prac- 
tical computation (see [17, 18]). But as shown in [19] for the Galerkin method, 
the mesh grading method can be exploited to restore the rate of convergence. 
Hence, we can hope to adopt the mesh grading technique to restore the rate of 
convergence for the collocation method as well. However, up to now, its theory 
has not been developed. 

In order to give a more precise analysis, we now introduce some notation. We 
shall consider equation (1) and its collocation approximation (2)* in a family 
of 27r-periodic Sobolev spaces. Each 27r-periodic function v has a Fourier 
expansion 

V(S) Z)() is 
inEZ 

where the Fourier coefficients are given by the formula 

v(m)= |1 v(s)ellfns ds. 
v/2- 7 : 
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Let Z* = Z\{0}. For t E R define the inner product 

(u, v)t = 1t(0)i)(0) + E IZ M (M) (M) 
MEZ* 

The Sobolev space H'(27r) consists of all 27r-periodic and complex functions v 
for which the norm ulIt = (u, u)t is finite. A useful fact is that H0 = L (27), 
and (u, v)0 = fJb u(u)T(a) du = (u, v), which implies that the L2(27r) norm 
is just the Ho norm. Below we shall adopt the notation I H 1o for the L2 norm 
without any remark. 

2. COLLOCATION ON A CIRCLE 

Since the simplest case of the first-kind integral equation (1) is for a circle, 
a detailed analysis of its collocation method is carried out in this section by 
employing the spectral analysis technique. Earlier convergence results have been 
obtained in [3, 13, 14] by use of the Fourier analysis method. 

In the case of a circular contour, equation (1 )* may be written as (see [20]), 

Aw =f, 

where Aw (s) =f Ri A(s - v)w (ca) d a with 

A(s - a) = - - log 2e- 1/2 sinS - | 

The collocation solution Wh satisfies 

QhAwh= Q h= Qh Aw. 

Letting Ah denote the restriction of A on Sh (), QhAh is invertible on Sh (LI) 

from Theorem 1 below. Let B = (QhAh) } QhA. Then Wh can be represented 
as 

Wh =B W. 
h 

In the following we shall show that Bh is a bounded operator. For this pur- 
pose we consider a complex piecewise constant function space S (II) = {v1 + 

iV2:1V, V2 E 5()}, and introduce the following basis of the space S (I). 
We assume for convenience that n is an odd number throughout this section. 
Let us define Ah = {p e Z: p/ < (n - 1)/2}, Ah = Ah\{O}. Then orthogonal 

basis functions for Sh(171) are defined by 

n-I 

ep(s) = e jXj(s), p e A, 
j=O 

with (ehp, ep) = 2rd, for p, p' E Ah. The definition of the functions erp(s), 
when they appear later, is extended to p E Z without any remark. One of the 
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advantages of introducing the basis functions e' (s) is that for any fh E Sh(FI), 
in terms of its corresponding discrete Fourier coefficients 

F f*P hcS fh(u)e- (a) du, p Ez Ah Fhf(p) _27 PEhh, 

the function fh can be represented as 

(3) fh(S)= 1d E F fh(p)e(s) 
PEAh 

This representation looks like the discrete Fourier expansion of the function 
fh(s) . Another advantage is that the basis functions e*p(s) are the eigenfunc- 

h~~~~~~~ tions of the collocation operator Q Ah. 

Theorem 1. QhAh in S h() hastheeigenvalues {Ap):p Ah} given by 

1 , p = 0, 

(4) !'|nsin7ZdPl(kl)k (kn+lpl)2+ (kn+n- - lp) 2 h 

and the corresponding eigenfunctions are ehp (s) . 

This theorem implies that AL is a simple eigenvalue, whereas for p E A* 
the eigenvalues Ap and A)p are degenerate, so that there are two independent 
eigenfunctions. (If n were an even integer, the expression for the eigenvalues 
would remain the same, but there would then be second simple eigenvalue, 
namely An/2-) 

Theorem 1 also implies that Q Ah is invertible on S (II), because all the 
eigenvalues Ap are greater than 0. 

The eigenvalues Ap have been discussed in the work of F. R. de Hoog [10] 
and S. Christiansen [7]. However, the eigenvalues Ap given in (4) are more 
explicit. 

Proof of Theorem 1. If Q hAhep(s) = Ape*'(s) with A real, by conjugating we 

obtain Q hA e-P(S) = A e-p(s) = A e-p7(s). Thus we only need a proof for 
p > 0. As in [20], 

Aw(s) Iml-1ti(m)efS ?zi(0)) 
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By a simple calculation, 

AX j(ar 12) = 2( Im7-1 f -ma duelm,+1/2 +h 
M~iEZ i 

= l (2 E m Re ( e- daeimrj+1/2) + h) 

= 2~ (2 E m-Re 2 sin(mh/2) eim(r-k)h + h) 

2 k= =1 (kn J 

= 2 (0 2Q(1) kfnl(lh/2)R (l/(r-J)h)+ h) 

= 2ir (E 4sin+Re(e'lEr-J)) (e)k +h) 

27r 
k=O 1= Ik(knkn 1) 

Thus, 

Ae*P(oII/2) 

= I E2 sinlh EeiPJh2Re(ei/(r)2) S ?k)2 +h2elPJh) 

However, for p + I ? 0, 

ZelPJh2Re(ei/(rJy)h) =f' ne ir, I = p or I = n - p, 

j=O = 1 0 otherwise. 

It follows that 
1, 0=O, 

AehP~~ !!s i =| n E P( 1 ) ( (kn +?p)2 + (kn + ni _ )2 ) el(r / 

The proof is completed. o 

Thus,~ ~ ~~~- F rom 1(S)wefnthtAJcrl)= ryl)Thsipisaufl 

symmetry property: for E, e e S (LI), 
(QhAqr for) = (p QhAY)> 

and therefore 

(6) ((QhA*)l 0, ) = (b, (QhA*)l )= 
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1. 50 

w(s) 

1.40 

1.30 - 

1.20 

1.10 _ 

S 

1.00 
0. 0.10 0.20 0.30 0.40 0.50 

FIGURE 1. The function w(s) 

Now for s E (0, 1) let 

c,(s) = Zk1%(1 /(k + s)2+ 1/(k +1- s)2) 
:00(-1)k(1/(k+s)2+ 1/(k+ 1 -s)2) 

Since w(s) is symmetric about 2, its maximum on the interval (O 1) can be 
expressed as 

(= sup w0(s). 
SE(O, 1/2] 

As shown in Figure 1, w(s) is a monotonic increasing function on the interval 
(0, ]. Thus w = wQ ) 1.34688525. 

In the following it is shown that w is an upper bound for JBh1 and that 
this bound becomes increasingly sharp as n -) oo. 

Theorem 2. (i) When n is sufficiently large, JB lo < w; 

(ii) lim ,0 JB ho = wj. 
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Proof. For convenience we let 

I/ImirnEZ*, a(M) { 
0/m. 

m Z 

Now 

|WhO = Z 1wh(m)l = Z Z wh(kn +P)| - 
mEZ PEAhkEZ 

Since we have, by a simple calculation, 

wh(kn + p)(kn + p) = (l)ke-iknal/2, (p)p 

it follows that 

TWh(kn + P)l a 2(kn +p) = IWh (P) 2a-2(p). 

Thus, 

1W 2 ~IW Tb(P) 1 2 
Wh o E Z() Ea (kn+p). 

PEAh 
a 

E 
h 

Further, for p E Ah and with Wh = B w, we have 

Wh(P) = l((Q hA) 1QhA phips) 

1 (Qh Aw, (QhA)I lp eSp) (see (6)) 

= (Q Aw, P helPS) 

where Ph is the orthogonal projection operator to Sh (11) under the inner prod- 
uct (., *) (or (., *)O). In the last step above we have used Theorem 1 and the 
fact that 

P e =ameh (s) for m E Z, 

with am = 2(mh)-1 sin(mh/2)eiMn/2 . Another useful fact is 

Qhelm= flem(s) for m E Z 

with gin = eimorl/2. Both of these facts will be used in the following argument 
without comment. Now 

h h 1iPs I h hijn+l)s h ips 
(Q Aw P e ) a(jn + l)tii~jn + l)(Q e (Jn/) e 

v27 jEZ /EAh 

= 1r s?. a(jn + l)w(jn ?l)fl?/aP(eh n+1(s), ehp(s)) S/2- 5 

jn+/lj~ l p 
jEZ/EAh 

= V2i S 1fl(n+Pa(Jn +?pp)zi(jn +p). 
jEZ 
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Thus, 

2 

1b '( )12 =A-l pi2 E j a(jn +p)zi(jn +p) 
jEZ 

r-Y 2 1 Ea2(kn +p) El I(jn +p)12, 
kEZ jEZ 

and therefore 

1Wh? E Zt(jn+p)J2P p (22 

lh1p<A, j nZ a2(p) \EJa (kn+p) 

However, by a direct calculation we find that 

1A a2 22 1 + h 2/12, 
n = 0 P P E (kn+ p)) 2 

a2 (Za)(k 0 (p/n), p E A* 

Since cl(s) > 1 for s E (0, 2]' we therefore have, when n is sufficiently large, 

1Wh2o < 2 E E (jn+p)12 21H12 
PEAh JEZ 

This completes the proof of (i). 

In order to show that limn-oo B 0o = w, for each 0 < 1 < (n - 1)/2 define 

a function w1 E Ho with the following Fourier coefficients: for j E Z, p E Ah, 

+ =,! jnila(jn i1) p = +1, 
W' (Jn + 

Op) 
= { 

otherwise, 

and follow the same procedure as in the proof of (i) above. We then obtain 

f (1 +h2/12) w'o, 1= 0, 

| cl2 (l/n)1w 0' < I < (n- 1)/2. 

This shows that in fact 

B = h1 < max {(n ) I 

and hence limO JBh10 = wo. The proof is now complete. o 

Theorem 2 tells us that wo can be viewed essentially as the value of JB 
h 

when n is sufficiently large. 

It is clear that (B h)2 = B , so Bh is a projection operator onto S (II). 

Moreover, the projection operator Bh has the following property, because 

(I - Bh)w = ( - Bh)(w - PhW), and JBh I is uniformly bounded. 
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Proposition 1. We have I (I - Bh )wl < cl(I _ p )Wphow where c is a constant 
independent of n. 

This proposition shows that the collocation method for the circle is conver- 
gent, and the error is within a constant multiple of the best L2 approximation. 
The first proof of this proposition was given in [13]. 

Next to the collocation method on the circle, we briefly consider the Galerkin 
method on the circle, 

Ph Aw1G = PhAw 

or equivalently, 

(AWhIX Vh)o = (Aw , Vh)O for Vh ES (vI). 

Since this equation is equivalent to (see [20]) 

(7) W ~G 
V o h ( 

(7) (wh vh)-1/2 = (WI Vh)-1/2 for vhES (11), 

WhG is exactly the orthogonal projection of w to Sh(11) under the particular 
inner product (, *)-1/2- To distinguish this particular orthogonal projection 

from P 
h 

we write WhG = P h2 w. Then (7) implies I~112K112 = 1, and we 
obtain that Ph 1/2 = (P Ah) P hA 

A similar explanation can be given for the collocation method on the circle. 
Indeed, let Sh (LI): = span{5(s- oj~112):J = 0, 1, ... n - 1}, where 6(s) is 

the delta function. It is obvious that the interpolation projection Q w of a 
function w E C(2ir) (or E Hl/2+c with e > 0) onto sh (n) is the unique 
solution of a Petrov-Galerkin approximation equation: 

(8) (Wh, Vh)O = (W, tlh)o for Vh E S*>)- 

Hence, the interpolation projection Qh W of w to Sh(LI) can be defined as the 
solution of equation (8). This definition holds for the particular inner product 
()O, but it obviously can be extended to the more general inner product 
(., .)t, with t a nonpositive real number. 

Definition. For t < 0, and w E H 2t+1/2+c with e > 0, if Wh E Sh (L) satisfies 

(9) (wh h)t = (w, Vh)t forvhES*(fl), 

h~~~~~~~~~~~~~~~~~~~ then Wh is called the interpolation projection of w to S (LI) under the inner 
product (, ), It is denoted by Wh = QthW. 

In this definition, the condition t < 0 is required so that the left-hand side 
of equation (9) makes sense. The assumption w c H2t+1/2+, with e > 0 makes 
the right-hand side of (9) finite. 

It is obvious that the collocation equation 

Q Awh =Q hAw 
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is equivalent to 

(Awh, vh)0 = (Aw, Vh)0 for Vh e Sh(11), 

and that this equation is equivalent to (see [20]) 

(wh h)-1/2 = (W , Vh)-1/2 for Vh e S*(H). 

Thus the collocation solution B hw is the unique solution of equation (9) with 
t = -2 . That is to say, Bh is just the interpolation projection to Sh (11) under 

2~~~~~~~~~~~~~~~~~~~~~~~ 
the particular inner product (, * Thus, we may write Bh = 

3. CONVERGENCE OF COLLOCATION ON THE POLYGON 

In this section we consider the convergence of the collocation method (2)* 
on a polygonal boundary. For this purpose we employ the results of the last 
section and show an equivalence of the collocation equation (2)* to a particular 
projection approximation of a second-kind Fredholm equation. We then prove 
the convergence of the collocation method on the polygonal boundary under a 
certain restriction on the angles of the corners. 

As in the analysis on a polygonal boundary in [20], the operator K in (1)* 
can be decomposed as 

K = A(I + L + E) 

with I an identity, E compact on L2(27r), and L bounded on L2(27r) by 
IL10 < maxlr<,<{1 - cos(Xr7rj2)}. The number Xr E (-1, 1) is defined by 
requiring (1 - Xr)7 to be the interior angle at the corner point Xd 7r V,~~~~~- 1 r r+1I 

v,.. The operator K: H0 0- HI is invertible when the transfinite diameter (or 
capacity) C. is not 1. Because of this decomposition, the collocation equation 
(2)* can be rewritten as 

(10) Qh Awh + QhA(L + E)wh Q Qhf 

Let f = Af*. Then (10) is equivalent to 

(10)* Wh + B h(L + E)wh = B hf* 

This has the form of a projection method for a standard second-kind Fredholm 
equation (see [1, 12, 4, 6]) with the particular projection operator Bh onto 
Sh(1). Since E is compact, L is bounded by 

IL10 < max { 1-coS(Xr7r!2)}, 

and Bh is bounded by IBh L < ?o, the standard theory yields the following 
convergence theorem on the polygonal boundary. 

Theorem 3. Assume C. $4 1. If 
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when n is sufficiently large, the collocation equation (2)* is uniquely solvable 
on Sh(11) for any continuous function 7. Furthermore, if w E L2(27r) is the 
solution of equation (1 )*, then 

Wh -W10 < C,(I-P )w_ W0 

where c is a constant independent of n. 

Proof. Since IL10 < 1 and JBhL10 < ? IL10 < 1, both (I+L)Y' and (I+BhL)' 
exist, and 

I(I+BhL)- lo <1 

Now 

(12) I+B (L+E)=(I+B L)(I+(I+B L) B E), 

and 

I+(I +B hL)-'B hE =I + (I + L)-'E - (I + B hL)- (I - B h)(I + L) 'E. 

Because I(I - Bh)vlo -- 0 as n -- oo, for v E L2(27r), and because E is 

compact on H0, so that (I + L) 1E is also compact, we have 

I(I + BhL) ('l - Bh)(I + L) lElo < 
I 

L (I - Bh) (I + L) Elo ,0 

as n -- oo. However, from the analysis in [20], the assumption C. $& 1 ensures 
that (I + L + E) 

- 
exists, so that (I + (I + L) 1E) is invertible. Therefore, 

when n is sufficiently large, there is a constant cl independent of n such that 

I(I + (I + B L)- 1B E)-' 1 < cl 

It follows from ( 12) that when n is sufficiently large, equation (10)* is uniquely 
solvable, and so is the collocation equation (2)* . Moreover, 

(13) I(I + B (L + E)) I0 < C 

Further, from (I + L + E)w = f* there follows 

w + B h(L + E)w= Bh* + (I - B h)W. 

Thus, 
(I + B h(L + E))(w - wh) = (I - B h)w, 

and because of (13), 

|W -Wh0 < 1 I(I-B )W10. 

Applying Proposition 1, we obtain 

h10 -~~~ ww-wheO prco (Is P )wmle 

with c independent of n . The proof is now complete. o 
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From the proof above we find that the restriction (11) on the angles at the 
corners derives from the estimate IBhLIO < ?Bh OILI0, and IBh0o co. The 
restriction may not be necessary, since IBhLIo could be less than 1 even if 
(11) is not satisfied. However, because the operators Bh and L are quite 
complicated, a direct estimate of IBhLI0 is difficult. A similar restriction occurs 
for the second-kind boundary integral equation methods (see for example [5]). 
As shown in [5], the restriction may be more severe than necessary, or may not 
be needed at all. 

The restriction (11) is equivalent to 

max XrX < 47r arcsin(2wo) 
/2 0.83417205. 

l<r<^y 

From this, we see more clearly that convergence holds when each of the interior 
angles of the polygon is within the interval (29.849030870, 330.150969130). 

4. SUPERCONVERGENCE 

In practice, one is usually more interested in quantities such as the 'flux' 
through the boundary F, 

| g(y) dy = | w (a) dua = (w, 1), 

and the potential at z V F, 

- | log IT - yIg(y) dy log IT - v()w(u) du = (kr, w), 

rather than in the value of w . That is to say, one is often more interested in 
the linear functional 

w(u)v(u) du = (w, v), 

where v is well behaved. The error in the approximation of (w, v) by (wh, v) 
is given by 

Theorem 4. Under the conditions of Theorem 3, 

I(W , v)-(Wh h v)| < ch|w-whI0IVl1 for v E H. 
where c is a constant independent of n. 

Proof. Since K: H0 -- H' is invertible, for v e H' there exists a u e H0 such 
that Ku = v and 

Jujo = IK vlo < clvIj , 

with c a constant. Thus, 

(W, V) - (Wh, V) = (W - Wh, Ku) = (K(w - Wh), u) 

= ((I-Q )K(w-wh), u), 
and so 

I(W V)-(Wh V)| < |IQh )KI1 W-h|OC1v)1 for w, v E H 
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However, it is well known that there is a constant c independent of n such 
that 

I('- Q )v1o < ?chjvI 

Therefore, 

j(IQ _ h )KIO < ch, 

because K: - HI is bounded. Thus the theorem follows. a 

Set w E H'. From Theorem 4 we obtain 

I(w, v) - (Wh, v)I < ch2 wI1IvJI. 

While Saranen [14] has shown that the optimal order of convergence on a suf- 
ficiently smooth boundary is 

I(w, v) - (Wh, v)I < ch3w1I2IvI2, 

the assumption in that paper is: the operator K - A: H -, H2 is at least 
bounded. This assumption fails in the case of polygons. The reason is that even 
when the function 7(s) on the right-hand side is well behaved, the solution w (s) 
is still singular at the corner points. That is to say, there exists a w e H0 and 
V H' such that Kw is a smooth function, and then (K-A)w = Kw-Aw E H 

2 
and V H 

Applications. It is known that near the corner v the function g(v(s)) can 

generally be expected to have a singularity of the form Is - sj I', where 8J 
usually has the value -IxJI/(l + IXJI) > -0.5, but could be larger in some 
situations (see [19]). Using the results of Graham [11], we obtain 

(14) IPhg(v(s)) - g(v(s))10= O(h= I ) 

where /? = min?<J<y fly . 
(1) Rate of convergence for the capacity Cr. Here we calculate the quantity 

Cv=exP ((j-Ar)) exP (- ( (a) d ) 

by the approximation Cr = exp(-( Aw (a) dul), where AF is the solu- 
tion of equation (1) with the right-hand side f = 1, W. is the solution of 

equation (1)* with the right-hand side 7 = I, and wh is the solution of the 
corresponding collocation equation (2)*. Theorem 4 and (14) give 

Jw A f A| = I(WA -WA, 1)1 < ch~w,-WI 0o = O(h4+312)- 

Therefore, 
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(2) Rate of convergence for the potential. Here we approximate the exact po- 
tential at z V F, 

u(T) - log IT - ylg(y) dy = - f log IT - v(u)jw(f) du, 
r -a~~~~~~~~~~~~~~~7 

by 

uh()=- 7 log IT - v(x)Iw (a) dao, 

where wh is the solution of equation (2)*. Since k(s) =-logIT-v(s)l e H 
Theorem 4 and (14) give 

IU(T) - Uh(T) lh(k , - )| < chhw-w l (h I ). 

The estimate O(hf+312) for the rate of convergence of the capacity and the 
potential may be capable of improvement. A numerical experiment shows that 
the practical rate is more like the one for the Galerkin method, i.e., O(h2(l+1)) 
rather than O(hf+312). However, a theoretical analysis yielding this order is 
not yet known. 
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